Print Page   |   Report Abuse
News & Press: Industry News

Bionic Researchers in U.S. Open Huge Opportunities for Advanced Biofuels from Waste

Friday, August 29, 2014   (0 Comments)
Share |

Source: Waste Management World


While the powerful solvents known as ionic liquids show great promise for liberating fermentable sugars from the lignocellulose in organic wastes and improving the economics of turning waste into advanced biofuels, an even more promising candidate is on the horizon – bionic liquids.

Researchers at the U.S. Department of Energy’s Joint BioEnergy Institute (JBEI) have developed ‘bionic liquids’ from lignin and hemicellulose, two by-products of biofuel production from biorefineries.

“What if we could turn what is now a bane to the bioenergy industry into a boon?” asked Blake Simmons, a chemical engineer who is JBEI’s chief science and technology officer and heads JBEI’s Deconstruction Division.

“Lignin is viewed as a waste stream that is typically burned to generate heat and electricity for the biorefinery, but if other uses for lignin could be found with higher economic value it would significantly improve the refinery’s overall economics,” he explained.

“Our concept of bionic liquids opens the door to realising a closed-loop process for future lignocellulosic biorefineries, and has far-reaching economic impacts for other ionic liquid-based process technologies that currently use ionic liquids synthesised from petroleum sources,” continued Simmons.

Simmons and Seema Singh, who directs JBEI’s biomass pre-treatment program, are the corresponding authors of a paper describing this research in the Proceedings of the National Academy of Sciences (PNAS).

Huge potential

The researchers explained that cellulosic sugars stored in the biomass of grasses and other non-food crops, and in agricultural waste, can be used to make advanced biofuels that could substantially reduce the use of the fossil fuels responsible for the release of nearly 9 billion metric tonnes of excess carbon into the atmosphere each year.

According to the JBEI, over a billion tonnes of biomass are produced annually in the U.S. alone, and fuels from this could be clean, green and renewable substitutes for gasoline, diesel and jet fuel on a gallon-for-gallon basis.

However, if biofuels, including cellulosic ethanol, are to be a commercial success, the institute said that they must be cost-competitive with fossil fuels.

The JBEI added that this means economic technologies must be developed for extracting fermentable sugars from cellulosic biomass and synthesising them into fuels and other valuable chemical products.

However, the researchers noted that a major challenge to the development of such fuels has been that unlike the simple sugars in corn grain, the complex polysaccharides in biomass are deeply embedded within a tough woody material called lignin.

Bionic liquids

Researchers at JBEI claimed that they have been cost-effectively deconstructing biomass into fuel sugars by pre-treating the biomass with ionic liquids – salts that are composed entirely of paired ions and are liquid at room temperature.

The ionic liquids that have emerged from this JBEI effort as a benchmark for biomass processing are imidazolium-based molten salts, which are made from nonrenewable sources such as petroleum or natural gas.

“Imidazolium-based ionic liquids effectively and efficiently dissolve biomass, and represent a remarkable platform for biomass pretreatment, but imidazolium cations are expensive and thus limited in their large-scale industrial deployment,” said Singh.

“To replace them with a renewable product, we synthesized a series of tertiary amine-based ionic liquids from aromatic aldehydes in lignin and hemicellulose,” she continued.

The JBEI researchers said that they have tested the effectiveness of their bionic liquids as a pre-treatment for biomass deconstruction on switchgrass, one of the leading potential crops for making liquid transportation fuels.

After 73 hours of incubation with these new bionic liquids, sugar yields were said to be between 90% and 95% for glucose, and between 70% and 75% for xylose.

According to the researchers these yields are comparable to the yields obtained after pre-treatment with the best-performing imidazolium-based ionic liquids.

“Lignin and hemicellulose are byproducts from the agricultural industry, biofuel plants and pulp mills, which not only makes these abundant polymers inexpensive, but also allows for a closed-loop bio-refinery, in which the lignin in the biowaste can be up-cycled and reused to make more bionic liquid,” commented lead author Aaron Socha (pictured top), who is now the Director of the Center for Sustainable Energy at the Bronx Community College in New York City.

The current batch of bionic liquids was said to have been made using reductive amination and phosphoric acid. But according to Socha the research team is now investigating the use of alternative reducing agents and acids that would be less expensive and even more environmentally benign.

“Our results have established an important foundation for the further study of bionic liquids in biofuels as well as other industrial applications,” he concluded.

This research was supported by the DOE Office of Science.

JBEI is a multi-institutional partnership led by Lawrence Berkeley National Laboratory (Berkeley Lab) that was established by the DOE Office of Science to accelerate the development of advanced, next-generation biofuels.

The lead author of the paper, ‘Efficient biomass pretreatment using ionic liquids derived from lignin and hemicellulose’, is Aaron Socha. Other co-authors are Ramakrishnan Parthasarathi, Jian Shi, Sivakumar Pattathil, Dorian Whyte, Maxime Bergeron, Anthe George, Kim Tran, Vitalie Stavila, Sivasankari Venkatachalam and Michael Hahn.

 Washington State Recycling Association | 545 Andover Park W, Ste 209, Tukwila, WA 98188 | 206.244.0311 |

Membership Management Software Powered by®  ::  Legal